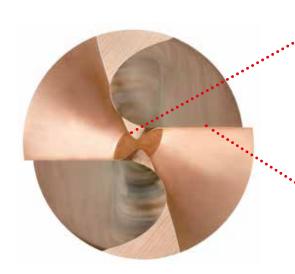

MULTI-FUNCTIONAL SPOT DRILL FOR CENTERING AND CHAMFERING



MULTI-FUNCTIONAL - FOR CENTERING AND CHAMFERING

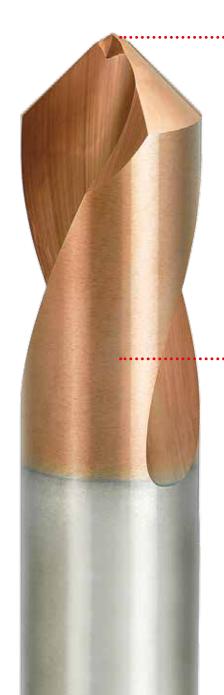
FEATURES

THINNED POINT GEOMETRY

The thinned point geometry promotes smooth chip discharge and provides excellent positional accuracy. The negative geometry of the drill point also offers high cutting edge strength.

SHARP CUTTING EDGE AND HIGH FRACTURE RESISTANCE

A cutting edge with both sharpness and high fracture resistance provides stable machining and prevents burrs.



DLE

Conventional

EXCELLENT SHARPNESS AND FRACTURE RESISTANCE

DOUBLE ANGLE POINT

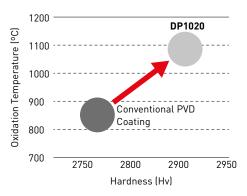
The double point angles ensure strength at the centre to prevent sudden fracturing.

*The central part of the bottom of the hole will not be 90°.

DLE

High Strength Centre


Conventional


Prone to Fracturing

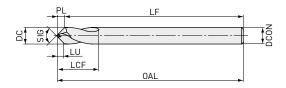
COATED GRADE DP1020

DP1020 grade offers excellent wear resistance and reduced friction for longer tool life and covers a wide range of applications.

With accumulated AlTiCrN based PVD coating

FOR AUTOMATIC LATHES

Shanks compatible with ER collets.

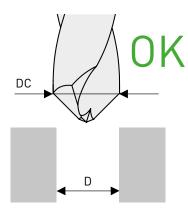

MULTI-FUNCTIONAL DRILL SERIES

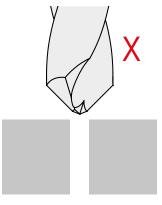
	DCON=3	3 <dcon<6< th=""><th>6<dc0n<10< th=""><th>10<dcon<16< th=""></dcon<16<></th></dc0n<10<></th></dcon<6<>	6 <dc0n<10< th=""><th>10<dcon<16< th=""></dcon<16<></th></dc0n<10<>	10 <dcon<16< th=""></dcon<16<>
h7	0	0	0	0
	-0.010	-0.012	-0.015	-0.018

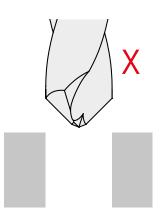
External Coolant

Order Number	DC	SIG	DP1020	LU	LCF	OAL	LF	PL	DCON
·····	.		·•··········		•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		
DLE0300S030P090	3	90°	•	1.2	9	45	43.7	1.3	3
DLE0400S040P090	4	90°	•	1.6	12	50	48.3	1.7	4
DLE0500S050P090	5	90°	*	2.0	14	60	57.9	2.1	5
DLE0600S060P090	6	90°	•	2.4	15	66	63.4	2.6	6
DLE0700S070P090	7	90°	*	2.8	18	74	71.0	3.0	7
DLE0800S080P090	8	90°	•	3.2	20	74	70.6	3.4	8
DLE1000S100P090	10	90°	•	4.1	24	84	79.7	4.3	10
DLE1200S120P090	12	90°	*	4.9	28	95	89.9	5.1	12
DLE1600S160P090	16	90°	*	6.6	35	113	106.2	6.8	16

^{1.} Due to the double point angle (at approx DC/4), the bottom of the hole will not have a 90° angle.


Edge chamfering is also not possible in this area.


2. The centering hole diameter should be less than the drill diameter DC, and the usable length LU should be used as a guideline.


DRILL DIAMETER SELECTION

WHEN CHAMFERING

With respect to the guide hole diameter D, select the drill diameter (DC) within the range of D < DC < 2D.

If DC is equal to or greater than double the hole dameter (2D)

If drill diameter DC equal to or smaller than D

If the guide hole diameter D is 5 mm: Drill diameter DC should be larger than 6 mm but less than 10 mm.

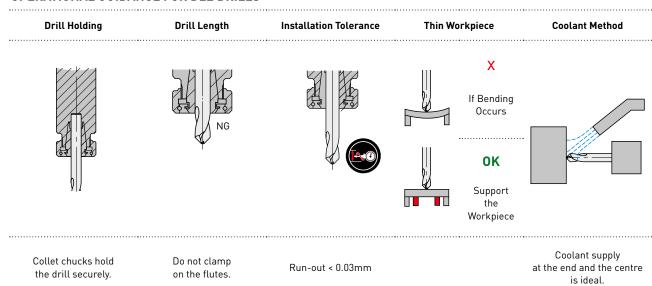

If the drill diameter DC is too large compared to the guide hole diameter D, chamfering cannot be performed.

Chamfering cannot be performed if the drill diameter DC is the same as the guide hole diameter D.

WHEN CENTRE DRILLING

Centering should not be performed if the drill diameter DC is the same as the guide hole diameter D. Refer to the usable length LU (page 4) as a guideline.

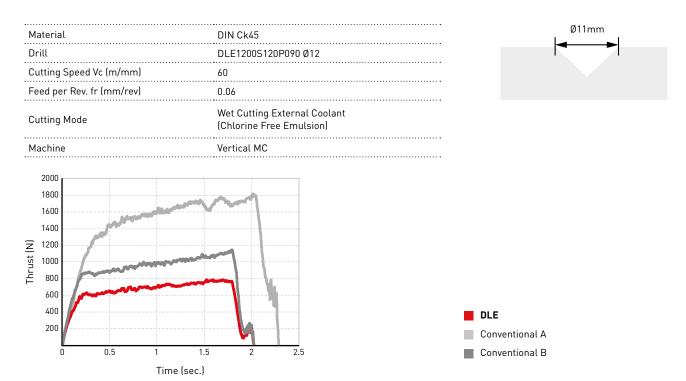
Due to the double point angle (at approx DC/4), the bottom of the hole will not have a 90° angle.


RECOMMENDED CUTTING CONDITIONS

	Р			Р	Р		
Material	Mild Steels (<180HB) DIN C10E etc.					Carbon Steels, Alloy Steels (280–350HB) DIN 40CrNiMoA etc.	
DC	n (min ⁻¹)	fr (mm/rev)	n (min ⁻¹)	fr (mm/rev)	n (min ⁻¹)	fr (mm/rev)	
3	7900	0.06 (0.04-0.08)	6800	0.06 (0.04-0.08)	6300	0.05 (0.03-0.07)	
4	5900	0.06 (0.04-0.08)	5100	0.06 (0.04-0.08)	4700	0.05 (0.03-0.07)	
5	5000	0.07 (0.05-0.09)	4400	0.07 (0.05-0.09)	4100	0.06 (0.04-0.08)	
6	4200	0.07 (0.05–0.09)	3700	0.07 (0.05-0.09)	3400	0.06 (0.04-0.08)	
7	3600	0.08 (0.05-0.10)	3100	0.08 (0.05-0.10)	2900	0.06 (0.04-0.08)	
8	3100	0.08 (0.05-0.10)	2700	0.08 (0.05-0.10)	2500	0.06 (0.04-0.08)	
10	2700	0.09 (0.05-0.11)	2300	0.09 (0.05-0.11)	2200	0.07 (0.04-0.09)	
12	2200	0.09 (0.05–0.11)	1900	0.09 (0.05–0.11)	1800	0.07 (0.04-0.09)	
16	1700	0.12 (0.10-0.14)	1500	0.12 (0.10-0.14)	1400	0.08 (0.06–0.10)	

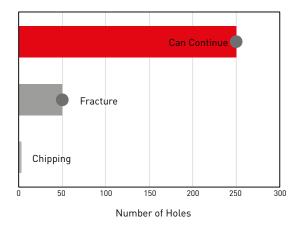
	1	М		K		К		
Material	Austenitic Stainless Steels (<200HB) DIN X5CrNi189, X5CrNiMo1810 etc.		1 -	Gray Cast Irons (<350MPa) DIN GG30 etc.		Ductile Cast Irons (<450MPa) DIN GGG40.3 etc.		
DC	n (min ⁻¹)	fr (mm/rev)	n (min ⁻¹)	fr (mm/rev)	n (min ⁻¹)	fr (mm/rev)		
3	1500	0.04 (0.02-0.06)	7900	0.06 (0.04-0.08)	5800	0.06 (0.04-0.08)		
4	1100	0.04 (0.02-0.06)	5900	0.06 (0.04-0.08)	4300	0.06 (0.04-0.08)		
5	1200	0.06 (0.04-0.08)	5000	0.07 (0.05-0.09)	3800	0.07 (0.05-0.09)		
6	1000	0.06 (0.04-0.08)	4200	0.07 (0.05-0.09)	3100	0.07 (0.05-0.09)		
7	900	0.06 (0.04-0.08)	3600	0.08 (0.05-0.10)	2700	0.07 (0.05-0.09)		
8	790	0.06 (0.04-0.08)	3100	0.08 (0.05-0.10)	2300	0.07 (0.05–0.09)		
10	630	0.06 (0.04-0.08)	2700	0.09 (0.05-0.11)	1900	0.08 (0.05–0.10)		
12	530	0.06 (0.04-0.08)	2200	0.09 (0.05-0.11)	1500	0.08 (0.05–0.10)		
16	390	0.08 (0.06-0.10)	1700	0.12 (0.10-0.14)	1100	0.11 (0.09-0.13)		

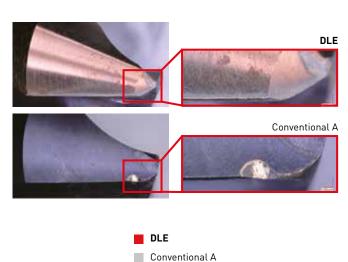
- 1. When chamfering, ensure that the tool diameter(DC) is D <DC <2D.
- 2. When V-grooving and edge chamfering, please reduce the cutting conditions.


OPERATIONAL GUIDANCE FOR DLE DRILLS

CUTTING PERFORMANCE

COMPARISON DURING CENTRE DRILLING

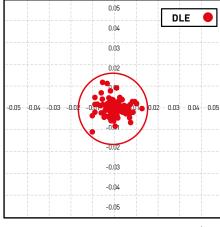

Lower thrust force required compared to conventional products.



COMPARISON WHEN CENTRE DRILLING STAINLESS STEEL

The double point angles, together with the negative cutting edge shape and cutting edge treatment of the thinned pocket provide outstanding durability with no abnormal damage.

***************************************	•••••••••••••••••••••••••••••••••••••••
Material	DIN X5CrNi189
Drill	DLE0600S060P090
Cutting Speed Vc (m/mm)	25
Feed per Rev. fr (mm/rev)	0.06
Hole Depth Aim for hole dia. (mm)	Ø5
Cutting Mode	Wet Cutting External Coolant (Water-insoluble Coolants)
Machine	Small Automatic Lathe


Conventional B

CUTTING PERFORMANCE

CENTRE HOLE POSITIONING ACCURACY

When drilling stainless steels, tools are likely to experience abnormal damage from built-up edge. Compared to conventional products which often suffer early fracturing, DLE gave a long tool life.

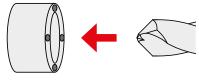
Material	DIN X46Cr13
Drill	DLE0600S060P090
Cutting Speed Vc (m/mm)	15
Feed per Rev. fr (mm/rev)	0.04
Hole Depth Aim for hole dia. (mm)	Ø5.5
Cutting Mode	Wet Cutting External Coolant (Chlorine Free Emulsion)
Machine	Vertical MC

DLE

After 90 Holes

Conventional A

Measurement impossible due to early fracturing

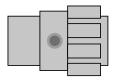

Conventional B

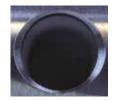
Measurement impossible due to early fracturing

(mm)

APPLICATION EXAMPLE

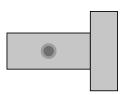
Insert	DLE0400S040P090
Workpiece (Machine Parts)	DIN C10E
Cutting Speed Vc (m/min)	30
Feed per Rev. fr (mm/rev)	0.045
Guide Hole Dia (mm)	Ø3
Cutting Mode	Wet Cutting External Coolant (Chlorine Free Emulsion)
Machine	NC Lathe, Tool Rotation
Results	Compared to conventional products, DLE produces a longer tool life and much smaller burrs.


Centering and Chamfering


Burrs are suppressed

APPLICATION EXAMPLE

Insert	DLE0600S060P090
Workpiece (Machine Parts)	DIN X5CrNi189
Cutting Speed Vc (m/min)	25
Feed per Rev. fr (mm/rev)	0.05
Guide Hole Dia (mm)	Ø5
Cutting Mode	Wet Cutting External Coolant (Water-insoluble)
Machine	CNC Automatic Lathe
Results	Conventional products often suffered from edge chipping. DLE was more stable and completed 200 holes with no damage to the cutting edge.



Centering and Chamfering

More than 200 holes Good surface finish and no tool damage

Insert	DLE0300S030P090
Workpiece (Engine Parts)	DIN X12CrNiS188
Cutting Speed Vc (m/min)	25
Feed per Rev. fr (mm/rev)	0.04
Guide Hole Dia (mm)	Ø2.0
Cutting Mode	Wet Cutting External Coolant (Water-insoluble) Curved Surface
Machine	CNC Automatic Lathe
Results	Conventional products generated burrs during drilling of the the first hole. DLE machined 60 holes without notable damage or burr generation and gave an outstanding surface finish.

Centering and Chamfering

After 60 Holes

After 1 Hole

 $The \ above \ examples \ are \ customer's \ applications, \ therefore \ can \ differ \ from \ the \ recommended \ conditions.$

MEMO

MEMO

MITSUBISHI MATERIALS CORPORATION

GERMANY

MMC HARTMETALL GMBH

Comeniusstr. 2 . 40670 Meerbusch

Phone +49 2159 91890 • Fax +49 2159 918966

Email admin@mmchg.de

U.K.

MMC HARDMETAL U.K. LTD.

Mitsubishi House . Galena Close . Tamworth . Staffs. B77 4AS

Phone + 44 1827 312312 . Fax + 44 1827 312314

Email sales@mitsubishicarbide.co.uk

SPAIN

MITSUBISHI MATERIALS ESPAÑA, S.A.

Calle Emperador 2 . 46136 Museros/Valencia Phone +34 96 1441711 . Fax +34 96 1443786

Email mme@mmevalencia.com

FRANCE

MMC METAL FRANCE S.A.R.L.

6, Rue Jacques Monod . 91400 Orsay

Phone +33 1 69 35 53 53 . Fax +33 1 69 35 53 50

Email mmfsales@mmc-metal-france.fr

POLAND

MMC HARDMETAL POLAND SP. Z 0.0

Al. Armii Krajowej 61 . 50 - 541 Wroclaw

Phone + 48 71335 1620 . Fax + 48 71335 1621 Email sales@mitsubishicarbide.com.pl

RUSSIA

MMC HARDMETAL RUSSIA 000 LTD.

Electrozavodskaya St. 24 . build. 3 . Moscow . 107023

Phone +7 495 725 58 85 . Fax +7 495 981 39 79

Email info@mmc-carbide.ru

MMC ITALIA S.R.L.

Via Montefeltro 6/A . 20156 Milano

Phone +39 0293 77031 . Fax +39 0293 589093

info@mmc-italia.it Email

TURKEY

MMC HARTMETALL GMBH ALMANYA - İZMİR MERKEZ ŞUBESİ

Adalet Mahallesi Anadolu Caddesi No: 41-1 . 15001 35580 Bayraklı/İzmir

Phone + 90 232 5015000 . Fax + 90 232 5015007

Email info@mmchg.com.tr

www.mitsubishicarbide.com | www.mmc-hardmetal.com

DISTRIBUTED BY:

Order Code: B223E Published: 2018.10 (0), Printed in Germany